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SUMMARY

Mathematical tools based on cross correlations between aerodynamic quantities of interest inside the
shear flow region and the radiated sound pressure are used to investigate noise generation mechanisms
in a plane compressible mixing layer. An original methodology relying on an efficient coupling between
proper orthogonal decomposition (POD) and stochastic estimation procedures is developed to analyze
the main aerodynamic mechanisms that govern noise production. POD is used to split the instantaneous
flow fluctuations as the sum of three components: the large- and small-scale coherent structures (LCS
and SCS) and the background quasi-Gaussian fluctuations. Based on this flow partitioning, quadratic
stochastic estimation is implemented to estimate the far-field acoustic pressure associated with each flow
component. The far field acoustic pressure associated with both LCS and SCS is then investigated. By
analyzing the RMS and temporal spectra of the far-field acoustic pressure, it is observed that the SCSs,
as defined thanks to the POD basis, are responsible for the main part of the noise emission. Copyright q
2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The analysis of noise generation by unsteady unbounded shear flows has been of great interest since
the introduction of the first aircraft jet engines about 50 years ago. Such an analysis began with the
pionnering work of Lighthill [1] who developed a theory of aerodynamic noise generation. In his
theory, the acoustic source can be related to aerodynamic fluctuations since the far-field pressure is
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directly correlated with the time variations of the unsteady flow field. Thus, a challenging scientific
problem consists in identifying the essential physical mechanisms involved in the noise production
process.

It is worth noting that the very definition of aeroacoustic sources is still a challenging issue.
Existing approaches can roughly been grouped into two families. The first family relies on the
Navier–Stokes equations, from which a source term for Dalembertian-type wave propagation
operators are recovered. The sources are then identified as the source term. The second family is
based on statistical analysis of the field, the aeroacoustic source area being defined as the region
that exhibits the highest correlation with the acoustic signal. Here, the fundamental equations of
fluid mechanics are not used and the causality principle is invoked to select relevant correlations.
Both methods have drawbacks and advantages. The former methods yield explicit mathematical
definitions for aeroacoustic sources, but can lead to some controversies dealing with the physical
meaning of the expressions (e.g. [2–4]) or the relevancy of splitting the source terms into isolated
components. The latter is fully general and can be applied to any flow, but does not provide an
explicit formula for the sources. Therefore, bridging between instantaneous features of the flow
and noise production is more tricky.

To investigate the noise generation mechanism in unbounded shear flows, computational aeroa-
coustic (CAA) simulations have been intensively used during the last 20 years. These simulations
are based either on the direct computation of the sound, performed on a very large computational
domain, including the computation of the far-field acoustic pressure, or on hybrid methods based
on the coupling between integral acoustic analogies and near-field computation in the acoustic
source zone. Quite satisfactory agreements are obtained with both approaches in the case of free
shear flows [5–8]. Experimentally, the investigation of the aerodynamic events involved in the
noise production process remains very complex. Such an analysis may be performed, thanks to
the causality method [9, 10], which relies on the correlation between aerodynamic events and the
noise source defined theoritically [1]. A review of the use of the causality method for that purpose
can be found in [9, 11, 12] and references therein.

According to the previous results dealing with unbounded free shear flows, several flow contri-
butions have been identified in noise generation mechanisms. It is now well established that an
isolated vortical flow structure is not able to generate noise but that the interaction (or the pairing)
between vortical flow structures is the dominant aerodynamic mechanism for noise emission in
free shear flows [5, 7, 13, 14]. For a turbulent subsonic jet, previous works have also demonstrated
that several noise generation mechanisms occur, depending on individual aerodynamic contribu-
tions related to the small-scale random eddies and the coherent flow dynamics [12]. Thus, it has
been shown that the primary source of noise in a turbulent jet is the low-order structures of
the flow [15, 16]. Moreover, based on two-dimensional (2D) and 3D numerical simulations of a
compressible plane mixing layer, Babucke et al. [13] observed that the emitted sound also depends
on the flow nature: the sound generation in two dimensions is dominated by a tonal noise source,
while in three dimensions, broad band noise is emitted.

However, as outlined in Bogey and Bailly [11], the main difficulty relies on the extraction of
the aerodynamic events that correspond to the theoritical definition of the noise sources. Indeed, it
is now well recognized that in turbulent flows, both LCS and background turbulence coexist and
interact. Despite the fact that coherent structures in turbulent flow have been studied intensively
during the last 30 years, no unique coherent structure definition and no universal mathemat-
ical tool to extract these coherent structures from turbulent flows exist. Coherent structures are
embedded within a randomly distributed field and their extraction still remains a very difficult task.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:906–926
DOI: 10.1002/fld



908 PH. DRUAULT, M. YU AND P. SAGAUT

Another problem is the difficulty in noise source modelling related to each part of a turbulent flow
decomposition.

The current investigation aims at showing that an hybrid methodology, which involves both
proper orthogonal decomposition (POD) and stochastic estimation (SE), can be used to better
understand the relationship between the flow coherent structures and the far-field acoustic pressure.
For that purpose, it is proposed to use the correlations between the dynamics of the unsteady
coherent structures and the acoustic emission. Bonnet et al. [17] were the first to combine linear
stochastic estimation (LSE) and POD approaches, introducing the complementary method. They
have performed an LSE of the velocity field from the knowledge of selected velocity components
obtained from a limited number of X -wires probes. The resulting field was then projected onto
the first POD modes. The aim of such a complementary method is to extract coherent structures
of the turbulent flow, using POD decomposition and to access their dynamical evolution, thanks
to LSE. More recently, several applications using similar combinations (POD and SE) have been
performed to investigate the time evolution of the large-scale flow structures from the knowledge
of wall pressure signals [18–20]. Then, these works led to propose a mechanism for the wall
pressure generation process within the shear layer flow. Moreover, in a turbulent jet, Picard and
Delville [21] performed a POD of the instantaneous spatial pressure distribution to hightlight
the dominant patterns of pressure in a turbulent jet. These dominant signatures are then used as
conditional events to access the time evolution of the flow structure with the use of the LSE
procedure.

To the authors knowledge, published works dealing with the coupled approach (POD–SE)
address only the estimation of the large-scale structures from the knowledge of selected pressure
signals and of spatial correlation between pressure and velocity fields. Here, we propose a new
implementation of this coupled approach that is to perform a quadratic stochastic estimation (QSE)
of the far-field acoustic pressure from the knowledge of coherent flow structures extracted with
POD procedure. First, POD is used to decompose instantaneous turbulent flow field into three
components, namely large coherent structures, small coherent structures and a residual quasi-
Gaussian (QG) random motion. Second, each component is used as conditional event for the SE
of the far-field acoustic pressure. The objective is then to determine which aerodynamic events are
involved in the main noise emission process.

This methodology is assessed by using a purely numerical approach. This new approach is
applied to a well-known reference shear flow: the 2D plane compressible mixing layer flow that
serves as a good 2D near nozzle model of jets at low computational expense. Moreover, the
computational domain can be extended to a very large domain so that direct computation of the
far-field pressure is possible, allowing for an accurate validation of the coupled approach.

The paper is organized as follows. Details of the computational set-up and the numerical method
are displayed in Section 2. POD and QSE tools are described in Section 3. Results of flow
splitting are discussed in Section 4, while different contributions to noise production are analyzed
in Section 5.

2. FLOW CONFIGURATION AND NUMERICAL METHOD

We consider a 2D spatially developing plane compressible mixing layer between two parallel
streams (Umax=1.6c and Umin=0.8c where c is the speed of sound) in a Cartesian frame of
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reference (Oxy), where x and y are the streamwise and transverse directions, respectively, and
(u,v) (or (u1,u2)) are the corresponding velocity components.

The whole computational domain size is (Lx , Ly)=(75��0,50��0) corresponding to a Cartesian
non-staggered computational grid with (Nx ,Ny)=(901,601) points. ��0 is the vorticity thickness
of the velocity profile at the inlet plane x= x0 (see Figure 1). All axis coordinates in the following
figures are normalized with ��0 , which provides a reference length for the large-scale coherent
flow structures in the computational domain. Figure 1 displays the vorticity field superimposed on
the far-field acoustic fluctuating pressure. Maxima levels of the fluctuating pressure field are about
±600Pa, which are small compared with the aerodynamic pressure fluctuations (around 105 Pa).
In this figure, we also observe two directivities related to the convective effects in the high (y>0)
and low speed (y<0) domains.

The part of the computational domain which will be investigated extends to 17��0 in the
streamwise direction and from −12.5��0 to +12.5��0 in the transverse direction (Figure 1).
It is observed in Figure 2 that in the target domain, y∈[7��0,12��0], the pressure intensity
decays as 1/r , corresponding to the far-field acoustic behaviour. This conclusion justifies the
use of this domain to investigate the causality method between velocity field and the far-field
acoustics.
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Figure 1. Left-hand side: whole computational domain. Right-hand side: vorticity field superimposed onto
the far-field acoustic fluctuating pressure, extracted from the physical domain.
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Figure 2. Sound intensity p′2/(�20a40) along a line at x=12��0 , away from
mixing layer flow (y<0). The line indicates a slope of −1. A log scale is used.

2.1. Numerical method

One of the main CAA problems consists in finding an efficient method for solving Navier–Stokes
equations and/or Euler equations and to model the physical problems of interest. This last require-
ment involves the capability of defining boundary conditions that accurately represent the exact
physical process while minimizing the computational cost and preserving the numerical stability.
For that purpose, an in-house code solving these equations has recently been developed [22]. In the
present work, the 2D inviscid compressible flow equations are formulated in Cartesian coordinates.

The numerical method is based on the pseudo-characteristic formulation of the convection
terms introduced by Sesterhenn [23] and further developed by Lu and Sagaut [22]. This new
decomposition of the pressure, velocity and entropy fluxes enables a very simple and natural use
of upwind schemes to enforce numerical stability while minimizing the numerical dissipation. To
enforce both numerical stability and accuracy for wave propagation problems, a high-order upwind
dispersion relation preserving (DRP) scheme is used. In the interior nodes the fourth-order accurate
upwind biased DRP scheme is used and this scheme is modified near the computational domain
boundaries [22]. The time integration is performed using a third-order TVD Runge–Kutta scheme
proposed by Shu and Osher [24].

The interest of the use of the pseudo-characteristic formulation is that it enables an easy imple-
mentation of efficient boundary conditions. Then, at outflow boundary, supersonic and subsonic
non-reflecting boundary conditions are specified [22]. A sponge domain in the upstream direction
(see Figure 1) is also implemented to damp the aerodynamic fluctuations before they reach the
outlet plane, preventing occurence of spurious reflections. In practice, in this domain, the numer-
ical scheme accuracy is decreased down to the first-order, so that the structures are not sustained.
The sponge region is located downstream x=37��0 and dissipates vortices before other pairings
happen downstream.
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2.2. Inflow forcing

To make the mixing layer well defined and reproducible and to avoid any spurious self-excitation
associated with the numerical discretization, it is forced with well-defined, unsteady deterministic
harmonic perturbations associated with the mean hyperbolic inlet profile. The mixing layer is then
forced at three frequencies: its fundamental frequency f0 and its first two subharmonics f0/2 and
f0/4. The fundamental frequency corresponds to the most amplified instabilities as predicted by
the linear stability analysis of the inviscid hyperbolic tangent inlet profile [25]. The amplitude of
the fundamental frequency is 0.001, whereas the amplitudes of the subharmonics are 0.0005. No
phase shift was specified between each mode.

3. MATHEMATICAL TOOLS

In the following, POD and QSE mathematical tools are applied to the fluctuating quantities (velocity
and pressure) only. These quantities are deduced from the classical Reynolds decomposition: ui =
Ui +u′

i and p= P+ p′, where the overbar denotes time average and u′
i and p′ are the fluctuating

velocity and pressure fields, respectively.

3.1. Proper orthogonal decomposition (POD)

POD was first proposed by Lumley [26] in 1967 as an objective technique for detecting and
extracting coherent structures in a turbulent flow. According to Lumley, a coherent structure is the
structure that has the largest mean square projection of the velocity field. This maximization leads
to the definition of the following Fredholm integral eigenvalue problem [27]:

Nc∑
j=1

∫
D
u′
i (X)u′

j (X
′)�(n)

j (X ′)dX ′ =�(n)�(n)
i (X) (1)

where X denotes the space variable (x, y), Nc is the total number of the velocity components
taken into account and D is the spatial domain investigation. Ri j (X ′, X)=u′

i (X)u′
j (X

′) represents
the time average two-point spatial correlation tensor. In this equation, �(n)(X) are the spatial
POD eigenfunctions and �(n) the corresponding eigenvalues, respectively. The projection of the
instantaneous velocity fields onto the POD eigenfunctions provides the POD temporal coefficients
a(n)(t). These elements define the classical POD method. Particular POD applications lead to
an integral eigenvalue problem, which quickly overcomes the available computer capabilities.
To alleviate this problem, Sirovich [28] developed a snapshot method that allows for a drastic
reduction of the order of the POD eigenfunction problem (see also Holmes et al. [27]). In the
snapshot method, the Fredholm integral eigenvalue problem is then computed from the Ri j (t, t ′)
correlation tensor based on a spatial average. Such a problem leads to the definition of temporal
POD eigenfunctions a(n)(t), which are choosen to be orthonormal a(n)(t)a(m)(t)=�nm , with �
the Kronecker symbol. Each POD coefficient �(n)(X) is then deduced from the projection of the
instantaneous velocity field onto the POD eigenfunction a(n)(t). These coefficients are uncorrelated
and 〈�(n)�(m)〉=�(n)�nm , where 〈〉 is related to the spatial average. The instantaneous fluctuating
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velocity component ui is then expressed as follows

ui (X, t)=
Nmod∑
n=1

a(n)(t)�(n)
i (X) (2)

where Nmod is the total number of the POD modes.
Because we want to extract coherent events associated with the main source of noise emission,

we propose to decompose the fluctuating velocity field into three parts, namely: large-scale coherent
structure (LCS), small-scale coherent structures (SCS) and background incoherent fluctuations,
respectively. Each flow contribution is defined, thanks to the POD decomposition. Since this
decomposition is based on the two-point correlation tensor, which is a statistical quantity computed
from all types of flow structures, isolated instantaneous structures (e.g. vortices, shear layers) and
events (advection of coherent structures, merging of vortices) are not represented by a single POD
mode and therefore has a non-local signature on POD basis. In the same way, such structures are
related to broadband spectra on non-local bases like the Fourier basis. Similar POD decompositions
have been already used to extract the mean part, coherent part and background fluctuations of
turbulent flows [29, 30]. In these previous works, the background fluctuations were supposed to
be QG. Following these preliminary works, we propose to define and extract background velocity
fluctuations as the residual field in the POD decomposition, which exhibit QG properties. In
practice, this is done looking at their probability density function (PDF) and the corresponding
skewness and flatness factors that have to be close to 0 and 3, respectively (see Section 4). The
origin of this Gaussian contribution is still an open issue and may be interpreted in different ways.
It is important to note that similar results have been obtained using experimental data in very
different flow configurations (Hot Wire Anemometry database [29] or Particle Image Velocimetry
database [30]). First, it might be linked to residual eigenmodes related to low-energy numerical or
measurement errors. The second possible explanation is that the Gaussian has a physical origin. It is
worth recalling here that the Wavelet decomposition has been observed to enable the identification
of a significant Gaussian contribution in strongly organized 2D turbulent fields [31, 32]. This feature
remains to be understood, as the possible occurence of a universal slope in the POD spectrum in
turbulent flows.

Finally, the instantaneous fluctuating velocity component ui is decomposed as follows:

u′
i (X, t)=uLCSi (X, t)+uSCSi (X, t)+uQGi (X, t) (3)

Each component can then be expressed as a summation of POD modes:

uLCSi (X, t)=
N1∑
n=1

a(n)(t)�(n)
i (X) (4)

uSCSi (X, t)=
N2−1∑

n=N1+1
a(n)(t)�(n)

i (X) (5)

uQGi (X, t)=
Nmod∑
n=N2

a(n)(t)�(n)
i (X) (6)

The problem associated with such a POD flow splitting consists in adequately determining the
parameters N1 and N2. Details of the determination procedure are given below.
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3.2. Quadratic stochastic estimation (QSE)

SE has been first introduced in the field of turbulence research by Adrian [33] who proposed to
estimate the flow behaviour using a particular condition referred to as a conditional eddy. This
conditional eddy can be estimated using various quantities and multiple SE applications have
been already performed [34–38]. This approach was successfully used to approximate conditional
averages and to identify and describe coherent motions of turbulent flows [34–36]. Generally, the
Linear version of the SE (LSE) provides satisfactory conditional averages of the LCS present in
turbulent flows [34, 36]. The higher-order (larger than 1) terms seem to have little influence in
the large-scale pattern of the flow [39]. Nevertheless, this linear form corresponds to a maximum
likelihood estimate of the stochastic model parameters if the deviations of data from the estimate
are independent and follow a normal distribution [40]. The condition of joint normalcy between
turbulent data and event measures is not generally satisfied (see Section 4). Therefore, many
works have provided a physical rationale for preferentially using the QSE procedure instead of
LSE [19, 35, 38]. The inclusion of non-linear terms in the SE model may be viewed as recognition
that real distributions of turbulent data and event vectors are not jointly normal. Moreover, when
dealing with two variables (velocity and pressure fields), the use of QSE leads to quantitatively
more accurate results than those deduced from LSE [19, 38]. Based on these preliminary works
and also on the fact that the far-field pressure is correlated with the square of the velocity amplitude
fluctuations [41], QSE is used in the present work to estimate the far-field acoustic pressure from the
knowledge of selected aerodynamic coherent events. Note that additional comments are provided
in Section 4 justifying the preferential use of QSE.
Mathematical formulation
Let us asssume that the aerodynamic events can be represented with the following instantaneous
uLCSi (or uSCSi ) vector field available at Nref locations. For the sake of simplicity, the time depen-
dency will be omitted in the equations below. At a given location X ′ in the far acoustic field region,
the QSE estimation of the pressure p′(X ′) is expressed as a function of the known uLCSi (Xref) (or
uSCSi ) velocity field, which is available inside the flow at Nref reference locations

pLCSqse (X ′)= Ap
i (X ′, Xref)u

LCS
i (Xref)+Ap

jk(X
′, X1ref, X2ref)u

LCS
j (X1ref)u

LCS
k (X2ref) (7)

using the notation of repeated indices. The determination of the coefficients Ap
i (X ′, Xref) and

Ap
jk(X

′, X1ref, X2ref) is based on the minimization of the mean square error in the estimate.
A linear system of equations is then obtained, allowing the determination of these coefficients

as a function of the two and three point spatial correlations tensor p′(X ′)uLCSi (Xref) and

p′(X ′)uLCSi (X1ref)uLCSj (X2ref). The computation of these coefficients which is time independent
is similar to the one proposed by Murray and Ukeiley [37].

4. POD AND QSE ANALYSES

4.1. POD application

The POD modes are computed using Nt =900 (2D) instantaneous velocity snapshots obtained by
performing the direct numerical simulation of the compressible mixing layer flow. The two velocity
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components are stored every 30 time steps, in a specific flow subdomain in which acoustic sources
will be determined. This subdomain is located inside the shear flow region: ([Xref]; [Yref])=([3��0 :
12��0]; [−1.1��0 :1.1��0]) corresponding to a regular mesh of (nx ×ny)=(109×29) points. It is
represented with a black box in Figure 6. The full snapshot set correspond to the passage of more
than 120 large-scale structures, allowing for the computation of converged statistics.

The 2D fluctuating velocity field represented by a matrix function: V(Xi j , tk), i=1, . . . ,nx ,
j =1, . . . ,ny , k=1, . . . ,Nt is retained. It is assumed to form a linear infinite dimensional Hilbert
space on a spatial domain nx ×ny . The implementation of the snapshot POD procedure applied to
numerical data yields the definition of (Nmod=Nt ) POD eigenfunctions, a(n)(t). Figure 3 shows
the convergence of the POD accumulated eigenvalues. A large part of the turbulent energy is then
concentrated in a few primary modes due the high coherence level of the flow. For instance, the
first 5 and 50 POD eigenfunctions among the 900 available ones, capture 90% and more than 99%
of the total energy, respectively.

Based on this flow decomposition, a first analysis is performed to extract coherent structures
(LCS and SCS fields) and background incoherent fluctuations. To determine the N2 parameter,
which defines the separation between coherent and incoherent flow contributions (see Equation (6)),
the properties of the incoherent fluctuations are investigated. First, an analysis of the associated
skewness S and flatness T coefficients is performed. A parametric study of these coefficients versus
N2 is done. Figure 4 displays the evolution of the spatially averaged skewness coefficients computed
from background fluctuations, 〈SQGui 〉. We then observe that both 〈SQGu1 〉 and 〈SQGu2 〉 coefficients
converge towards zero for N2>90. Quasi-similar results are obtained for the spatially averaged
flatness coefficients. In a second step, an analysis of the PDF associated with the background
fluctuations is performed as a function of N2. An illustration is given in Figure 5 for N2=100,
where the PDFs of the transverse velocity component extracting from background QG fluctuations
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Figure 3. POD convergence analysis. x-axis is limited to 50 among the 900 available modes.
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Figure 4. Evolution of the spatially averaged skewness 〈SQGui 〉 coefficients versus N2.
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Figure 5. Comparative analysis of the normalized PDF of transverse velocity component (dashed line).
Left-hand side: coherent field, including both LCS and SCS fields; Right-hand side: incoherent background

fluctuations. The solid line corresponds to a Gaussian fit.

and also from the coherent field are plotted. The PDF of the incoherent velocity is similar to the
one of a Gaussian variable. Conversely, the PDF of the coherent velocity greatly differs from the
Gaussian one. Otherwise, note that when N2 values are in [90 :110] interval, we do not observe
significant differences on skewness and flatness coefficients and on the PDF representation. N2 is
then choosen to be equal to 100. The coherent flow including both LCS and SCS fields is then
reconstructed from 11% of the total number of POD modes and these POD modes correspond
to 99.8% of the total fluctuating kinetic energy. Moreover, the QG background fluctuations are
computed from 89% of the total number of POD modes and retain only 0.2% of the total kinetic
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energy. Owing to the fact that QG fluctuations correspond to a very small flow energy contribution,
these fluctuations can be sensitive to numerical errors as well as to the flow background fluctuations.

These results are quite similar to previous ones based on wavelet flow decomposition applied
to a 2D isotropic turbulent flow [31].

The difficulty then arises in choosing the N1 number according to the current objective, that
is, to extract the part of the coherent motion that is implicated in the main noise emission. A
discussion on choice of this number is performed in Section 5.1.

4.2. QSE analysis

An analysis of the fluctuating pressure and velocity fields is performed, justifying the preferential
use of the QSE procedure versus LSE. Figure 6 presents the PDF obtained from the fluctuating
u1 velocity component inside the flow field and the fluctuating pressure in the far acoustic field
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Figure 6. Left-hand side: extracted numerical domains (velocity field, inside the mixing layer flow and
far-field acoustic pressure). Right-hand side: normalized PDF between u1 velocity component (x-axis)

and pressure field (y-axis) extracted from these domains.
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Figure 7. Two point spatial correlation tensor between velocity components (along the line y=0) and
pressure field (along the line y=−11��0 ). Range colour is [−0.5,0.6] in each figure.

(in the low-speed domain y<−10��0 ). The computed PDFs greatly deviate from the Gaussian
one, showing that (p,ui ) fields do not follow a normal distribution. Similar results are obtained
when PDFs are computed from pressure field obtained in the high-speed domain (y>8��0 ).

Moreover, Figure 7 displays the two and three points spatial correlation tensors Rip(Xref, X ′)
and Ri jp(X1ref, X2ref, X ′). Such correlations are computed from velocity fields obtained in the core
region of the plane mixing layer (x ∈[3��0,12��0], y=0) and from pressure field obtained in the
low-speed domain (x ∈[5.7��0,16.5��0], y=−11��0). The levels of two and three point correla-
tions are quite similar, meaning that the influence of the higher-order terms on the SE procedure
is not negligible. Similar results are obtained when computing these correlations from fluctuating
pressure field obtained in the far high-speed domain. A brief analysis of these correlations shows
that the far-field acoustic pressure is well correlated with the large-scale coherent flow structure.
These figures also give an indication about the noise emission directivity. Indeed, the pressure
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field is mainly correlated with the flow structures in the mixing layer flow, with a spatial decay of
several ��0 .

Finally, these analyses (PDF, two and three point correlations) justify the inclusion of the
quadratic terms in the SE procedure.

5. RESULTS

The POD flow partitioning is first investigated. Then, the instantaneous far-field acoustic pressure
is estimated using QSE from the knowledge of each instantaneous velocity field contribution
inside the plane mixing layer flow. Note that for the QSE estimation of the pressure field, only
(4×3) velocity samples among the (nx ×ny) available ones are used as conditional events. These
reference samples are located at y=±��0/2 and y=0 in the y-direction and are equally spaced
in the streamwise direction.

5.1. POD flow partitionning

The first step consists in determining the N1 parameter, which defines the separation between the
LCS and SCS of the flow. To this end, we compute the root mean square (RMS) of the QSE
reconstructed pressure field, p

′rms
qse . This QSE reconstruction is performed from the knowledge of

selected coherent events that are represented with a summation of POD modes (see Equations (4)
and (5)). The influence of the velocity POD mode number N1 on the RMS pressure field, p

′rms
qse

can then be investigated. Thanks to the foreknowledge of the full data set, the RMS field, p
′rms
qse ,

can be directly compared with the original one, p
′rms
orig , computed from raw numerical data. An

investigation of the following error field

errorp
′

rms(X
′)= p

′rms
orig (X ′)− p′rms

qse (X ′) (8)

is carried out. A spatial average of errorp
′

rms(X ′), denoted 〈errorp′
rms〉, is then computed in the far

low-speed domain (y<−7��0 ) and/or in the far high-speed domain (y>7��0 ).
The LCS velocity field is then extracted using N1 values pertaining to the interval [1 :99].

For each extracted LCS field, the far-field acoustic pressure is QSE-estimated (Equation (7)).

The spatial average of the resulting error field, 〈errorp′
rms〉, is then computed for each N1 value.

Figure 8 presents the evolution of 〈errorp′
rms〉 versus N1, computed over the high (y>7��0 ) and

low (y<−7��0 ) speed domains. Both figures exhibit similar behaviour. Notice that when N1 is
greater than 25, almost constant RMS error values of 0.02 and 0.015 are obtained in the high- and
low-speed domains, respectively.

Another investigation of 〈errorp′
rms〉 versus N1 is now performed, in which p′ is now deduced

from the QSE estimation using the SCS velocity field as conditional events. This SCS velocity
field is computed from Equation (5) varying N1 while keeping N2=100. For each N1 value, a QSE

reconstruction of the far-field acoustic pressure is performed. The RMS error field, 〈errorp′
rms〉, is

then computed for each N1 value using a spatial average over the far high-speed domain (Figure 9).

A similar representation of 〈errorp′
rms〉 is obtained in the low-speed domain. For N1=5, the evolution

of 〈errorp′
rms〉 exhibits a slight slope change. We also observe that for N1<10, the RMS error values
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Figure 8. Evolution of 〈errorp′
rms〉 versus N1 where p′ is the reconstructed pressure field based on the

LCS velocity field (Equation (4)). Left-hand side: the spatial average is performed in the far high-speed
domain. Right-hand side: the spatial average is performed in the far low-speed domain.
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Figure 9. Evolution of 〈errorp′
rms〉 as a function of N1 where p′ is the reconstructed pressure

field based on the SCS velocity field (Equation (5) with (N2=100)). The spatial average is
performed in the far high-speed domain.

are quite similar to the one using N1=1. This result shows that the first POD velocity modes
have no real effect on the far-field pressure estimated via the QSE procedure. In the same way,
the LCS associated with these first POD modes have no significant contribution to the RMS of the
pressure field. Finally, based on this result and also on the analysis of instantaneous vorticity fields
associated with LCS and SCS velocity fields, respectively, N1 is set equal to 5 in the following.
Then, LCS field contain 90% of the total kinetic flow energy (see Figure 3), and SCS (SCS field,
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Figure 10. Illustration of the POD flow decomposition. Instantaneous vorticity field. Top to
bottom: original field, LCS field, SCS field and quasi-Gaussian (QG) fluctuations. Contour lines

are interval from −420 to −5 with a step of 20.

Equation (5) using (N1,N2)=(5,100)) contributes to no more than 10% of the total turbulent
kinetic flow energy.

Each 2D instantaneous velocity field is then decomposed into three parts: LCS and SCS coherent
fields and background incoherent fluctuations (QG field). An illustration of this flow decomposition
is given in Figure 10 in which instantaneous vorticity fields extracted from each part of this flow
decomposition are provided. In this figure, LCS (LCS field) are well isolated from the first POD
modes. SCS (SCS field) are also clearly identified. This SCS field contains the shear zones related
to the LCS field.

5.2. QSE estimation of the far-field acoustic pressure

Based on the POD decomposition, resulting in LCS, SCS and QG velocity fields are then succes-
sively used as conditional events for the QSE estimation of the far-field acoustic pressure. First,
an analysis is performed from the RSM values of the resulted pressure field. Second, a spectral
analysis of the far-field acoustic pressure obtained at selected locations is carried out.
RMS of the far-field acoustic pressure
Figure 11 displays the RMS of the following pressure fields:

(a) Original pressure field directly obtained from the numerical simulation (reference data).
(b) p′

qse: QSE estimated pressure field using the Nmod POD velocity modes corresponding to
the entire fluctuating velocity field as conditional event.

(c) pLCSqse : QSE estimated pressure field using the LCS field (corresponding to the 5 first POD
modes) as conditional event.
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(d) pSCSqse : QSE estimated pressure field using the SCS field (corresponding to the summation
of POD modes from 6 to 99) as conditional event.

(e) pQGqse : QSE estimated pressure field using the QG fluctuations (corresponding to the residual
POD modes) as conditional event.

Results of test case (b) are quite similar to the original data, making it possible to validate
and to show the efficiency of the QSE estimation. Moreover, RMS values deduced from test case
(b) are different from the summation of the ones arising from test cases (c), (d) and (e). This
observation is directly linked to the fact that the QSE procedure takes into account the coupling
existing between each velocity POD mode. Each flow contribution is phase correlated and then a
partial cancellation occurs when dealing with the whole velocity field (test case b). Conversely,
when using LSE procedure, such coupling cannot be taken into account [42].

This figure shows also that the LCS (LCS field) are not responsible for the main noise emissions
especially in the low-speed domain (y<−8��0). This result is in agreement with previous studies
in which it has been observed that large-scale convective structures are not the essential features
for the noise emission in turbulent shear flows. The main part of the noise emission is then related
to the SCS events. According to Figure 10, this SCS field is composed of SCS that interacts with
themselves and also of shear flow events that tend to modify the large-scale flow structures. It
is then confirmed that the interaction between flow structures and especially between small-scale
structures is the main aerodynamic mechanism for noise emission in shear flows.

(a) (b) (c) (d) (e)

5 10 15

–5

0

5

5 10 15

–5

0

5

5 10 15

–5

0

5

5 10 15

–5

0

5

5 10 15

–10 –10 –10 –10 –10

–5

0

5

10 10 10 10 10

LCS SCS GF

0

0.5

1

1.5

2

2.5
x 105

Figure 11. RMS of the fluctuating pressure field reconstructed from QSE using different conditional
events. See in the text the corresponding test cases from (a) to (e). A same colormap is used.
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Spectral analysis of the far-field acoustic pressure
A second analysis is performed to access the spectral content of the far-field pressure. Two selected
locations, X1 and X2, are investigated. These points have the following coordinates (x1, y1)=
(15��0,6.5��0) in the high-speed domain and (x2, y2)=(15��0,−7��0) in the low-speed domain.
The temporal spectra are computed from the following reconstructed pressure fields: pLCSqse , pSCSqse

and pGSqse. Obtained spectra are compared with the original one deduced from raw numerical data.
Figures 12 and 13 represent the pressure spectra obtained at X1 and X2, respectively. Original
spectra in both supersonic and subsonic flow domain exhibit selected frequencies that are directly
related to the combination of the fundamental frequency f0 and its subharmonics of the plane
mixing layer flow. Two frequency peaks are mainly obtained for f0/4 and f0 frequencies. The
summation of the spectra associated with pLCSqse , pSCSqse and pGSqse pressure fields differs greatly
from the original data due to the existence of a coupling between velocity POD modes, at it was
previously noted. This can be explained by the fact that, when dealing with the full velocity field
as a conditional event, some noise emission mechanisms may be partially cancelled by interactions
between the three flow components, since they are not phase-locked.
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Figure 12. Spectra computed from pLCSqse , pSCSqse and pGSqse pressure fields, respectively, and compared with
the original one. Spectra are computed at X1, located in the high-speed domain.
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Figure 13. Spectra computed from pLCSqse , pSCSqse and pGSqse pressure fields, respectively, and compared with
the original one. Spectra are computed at X2 located in the low-speed domain.

In Figure 13, the pSCSqse pressure spectrum clearly restores the original spectrum where obtained
peaks have the same amplitudes as the original ones. This result confirms that for subsonic shear
flow, most of the noise emission is due to the SCS. Conversely, the pLCSqse pressure spectrum
exhibits only the peak associated with the f0 frequency, which corresponds to the passage of the
large-scale flow structures. In Figure 12, the spectrum computed from the pLCSqse pressure field
exhibits similar peaks as the original pressure spectrum but with lower amplitudes. The spectrum
computed from the pSCSqse is quite similar to the original one even if the peak obtained at the
frequency f0/4 has a greater amplitude than the one obtained from the original data. In the high-
speed domain, supersonic convective large-scale flow structures as well as the interactions between
small-scale flow structures are involved in the noise emission. This last result is directly related
to the non-localness of the aerodynamic events on the POD basis. The pairing process, which
is known to be the main contributor to noise generation in the present flow, appears as a linear
combination of a large number of PODmodes. Therefore, acoustic wave generation involves all flow
parts.
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6. CONCLUSION

A new methodology based on an efficient coupling of proper orthogonal decomposition (POD) and
stochastic estimation (SE) is developed to identify the essential aerodynamic mechanism involved
in noise production by a plane mixing layer flow. This methodology is based on a judicious use of
the flow statistics, and especially of the spatial velocity/velocity and velocity/pressure correlation
tensors. Thus, POD is first used to decompose the instantaneous velocity field into several flow
contributions. It then permits to isolate the large-(LCS) and small-scale coherent flow structure
(SCS) and also some background Quasi-Gaussian (QG) fluctuations. The quadratic stochastic
estimation (QSE) is implemented to estimate the far-field acoustic pressure associated with each
flow component. By analyzing the RMS of the far-field acoustic pressure and also the associated
spectra of the pressure field, we show that the main part of the noise emission is related to the SCS
event of the plane mixing layer flow. Obtained results confirm the previous ones based on other
methodologies applied to unbounded turbulent flows. Current methodology also confirms that in
unbounded shear flows, several noise generation mechanisms occur as a function of individual
aerodynamic contribution related to the large- and small-scale coherent flow structures and to the
background fluctuations. Finally, such a POD/QSE combination, which allows for the reduction
of the essential aerodynamic events that are involved in the main noise emission mechanisms,
offers many prospectives for the problem of noise generation for unsteady unbounded turbulent
flows. Indeed, based on this POD flow decomposition, it may be possible to improve the noise
source modelling related to both LCS and SCS present in turbulent flows. Moreover, a subsequent
analysis has to be performed in order to correlate the theoretical source noise emission and the
flow event contribution detected from POD application.
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